Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
biorxiv; 2023.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2023.01.27.525575

RESUMEN

How infection by a viral variant showing antigenic drift impacts a preformed mature human memory B cell (MBC) repertoire remains an open question. Here, we studied the MBC response up to 6 months after Omicron BA.1 breakthrough infection in individuals previously vaccinated with three doses of mRNA vaccine. Longitudinal analysis, using single-cell multi-omics and functional analysis of monoclonal antibodies from RBD-specific MBCs, revealed that a BA.1 breakthrough infection mostly recruited pre-existing cross-reactive MBCs with limited de novo response against BA.1-restricted epitopes. Reorganization of clonal hierarchy and new rounds of germinal center reaction, however, combined to maintain diversity and induce progressive maturation of the MBC repertoire against common Hu-1 and BA.1, but not BA.5-restricted, SARS-CoV-2 Spike RBD epitopes. Such remodeling was further associated with marked improvement in overall neutralizing breadth and potency. These findings have fundamental implications for the design of future vaccination booster strategies.


Asunto(s)
Síndrome Respiratorio Agudo Grave , Dolor Irruptivo , Linfoma de Células B
2.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.11.22.517073

RESUMEN

Humans display vast clinical variability upon SARS-CoV-2 infection, partly due to genetic and immunological factors. However, the magnitude of population differences in immune responses to SARS-CoV-2 and the mechanisms underlying such variation remain unknown. Here we report single-cell RNA-sequencing data for peripheral blood mononuclear cells from 222 healthy donors of various ancestries stimulated with SARS-CoV-2 or influenza A virus. We show that SARS-CoV-2 induces a weaker, but more heterogeneous interferon-stimulated gene activity than influenza A virus, and a unique pro-inflammatory signature in myeloid cells. We observe marked population differences in transcriptional responses to viral exposure that reflect environmentally induced cellular heterogeneity, as illustrated by higher rates of cytomegalovirus infection, affecting lymphoid cells, in African-descent individuals. Expression quantitative trait loci and mediation analyses reveal a broad effect of cell proportions on population differences in immune responses, with genetic variants having a narrower but stronger effect on specific loci. Additionally, natural selection has increased immune response differentiation across populations, particularly for variants associated with SARS-CoV-2 responses in East Asians. We document the cellular and molecular mechanisms through which Neanderthal introgression has altered immune functions, such as its impact on the myeloid response in Europeans. Finally, colocalization analyses reveal an overlap between the genetic architecture of immune responses to SARS-CoV-2 and COVID-19 severity. Collectively, these findings suggest that adaptive evolution targeting immunity has also contributed to current disparities in COVID-19 risk.


Asunto(s)
COVID-19 , Infecciones por Citomegalovirus
3.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.12.21.473528

RESUMEN

Memory B cells (MBCs) represent a second layer of immune protection against SARS-CoV-2. Whether MBCs elicited by mRNA vaccines can recognize the Omicron variant is of major concern. We used bio-layer interferometry to assess the affinity against the receptor-binding-domain (RBD) of Omicron spike of 313 naturally expressed monoclonal IgG that were previously tested for affinity and neutralization against VOC prior to Omicron. We report here that Omicron evades recognition from a larger fraction of these antibodies than any of the previous VOCs. Additionally, whereas 30% of these antibodies retained high affinity against Omicron-RBD, our analysis suggest that Omicron specifically evades antibodies displaying potent neutralizing activity against the D614G and Beta variant viruses. Further studies are warranted to understand the consequences of a lower memory B cell potency on the overall protection associated with current vaccines.


Asunto(s)
Linfoma de Células B
4.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.11.15.468633

RESUMEN

SARS-CoV-2 entry into host cells is mediated by the binding of its spike glycoprotein to the angiotensin-converting enzyme 2 (ACE2) receptor, highly expressed in several organs, but very low in the brain. The mechanism through which SARS-CoV-2 infects neurons is not understood. Tunneling nanotubes (TNTs), actin-based intercellular conduits that connect distant cells, allow the transfer of cargos, including viruses. Here, we explored the neuroinvasive potential of SARS-CoV-2 and whether TNTs are involved in its spreading between cells in vitro. We report that neuronal cells, not permissive to SARS-CoV-2 through an exocytosis/endocytosis dependent pathway, can be infected when co-cultured with permissive infected epithelial cells. SARS-CoV-2 induces TNTs formation between permissive cells and exploits this route to spread to uninfected permissive cells in co-culture. Correlative Cryo-electron tomography reveals that SARS-CoV-2 is associated with the plasma membrane of TNTs formed between permissive cells and virus-like vesicular structures are inside TNTs established both between permissive cells and between permissive and non-permissive cells. Our data highlight a potential novel mechanism of SARS-CoV-2 spreading which could serve as route to invade non-permissive cells and potentiate infection in permissive cells.


Asunto(s)
Síndrome Respiratorio Agudo Grave , Infecciones
5.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.06.17.448459

RESUMEN

How a previous SARS-CoV-2 infection may amplify and model the memory B cell (MBC) response elicited by mRNA vaccines was addressed by a comparative longitudinal study of two cohorts, naive individuals and disease-recovered patients, up to 2 months after vaccination. The quality of the memory response was assessed by analysis of the VDJ repertoire, affinity and neutralization against variants of concerns (VOC), using unbiased cultures of 2452 MBCs. Upon boost, the MBC pool of recovered patients selectively expanded, further matured and harbored potent neutralizers against VOC. Maturation of the MBC response in naive individuals was much less pronounced. Nevertheless, and as opposed to their weaker neutralizing serum response, half of their RBD-specific MBCs displayed high affinity towards multiple VOC and one-third retained neutralizing potency against B.1.351. Thus, repeated vaccine challenges could reduce these differences by recall of affinity-matured MBCs and allow naive vaccinees to cope efficiently with VOC.


Asunto(s)
COVID-19 , Linfoma de Células B
6.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.02.04.429604

RESUMEN

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The positive-sense single-stranded RNA virus contains a single linear RNA segment that serves as a template for transcription and replication, leading to the synthesis of positive and negative-stranded viral RNA (vRNA) in infected cells. Tools to visualize viral RNA directly in infected cells are critical to analyze its replication cycle, screen for therapeutic molecules or study infections in human tissue. Here, we report the design, validation and initial application of fluorescence in situ hybridization (FISH) probes to visualize positive or negative RNA of SARS-CoV-2 (CoronaFISH). We demonstrate sensitive visualization of vRNA in African green monkey and several human cell lines, in patient samples and human tissue. We further demonstrate the adaptation of CoronaFISH probes to electron microscopy (EM). We provide all required oligonucleotide sequences, source code to design the probes, and a detailed protocol. We hope that CoronaFISH will complement existing techniques for research on SARS-CoV-2 biology and COVID-19 pathophysiology, drug screening and diagnostics.


Asunto(s)
COVID-19 , Infecciones por Coronavirus
7.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.11.17.385252

RESUMEN

Memory B cells play a fundamental role in host defenses against viruses, but to date, their role have been relatively unsettled in the context of SARS-CoV-2. We report here a longitudinal single-cell and repertoire profiling of the B cell response up to 6 months in mild and severe COVID-19 patients. Distinct SARS-CoV-2 Spike-specific activated B cell clones fueled an early antibody-secreting cell burst as well as a durable synchronous germinal center response. While highly mutated memory B cells, including preexisting cross-reactive seasonal Betacoronavirus-specific clones, were recruited early in the response, neutralizing SARS-CoV-2 RBD-specific clones accumulated with time and largely contributed to the late remarkably stable memory B-cell pool. Highlighting germinal center maturation, these cells displayed clear accumulation of somatic mutations in their variable region genes over time. Overall, these findings demonstrate that an antigen-driven activation persisted and matured up to 6 months after SARS-CoV-2 infection and may provide long-term protection.


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA